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SUMMARY

We report the performance of a newly developed low dissipative sixth-order spatial and fourth-order tem-
poral scheme (J. Comput. Phys. 1999; 150:199; RIACS Report 01.01, NASA Ames Research Centre,
October 2000) for multiscale supersonic reactive �ows that contain shock waves. The accuracy and
e�ciency of the scheme are compared with a low-dissipative �fth-order weighted ENO (WENO) scheme
(ICASE Report No. 95-73, 1995). This paper con�rms and complements the grid convergence study of
Sj�ogreen and Yee where a complex shock=shear=boundary-layer interactions model was also included.
A 2D viscous �ow consisting of a planar Mach 2 in air interacting with a circular zone of hydrogen

bubbles in two di�erent initial con�gurations is considered. The two initial con�gurations are a single
bubble and two non-aligned bubbles. The gradient in pressure across the shock in conjunction with
the gradient in �uid density between the air and hydrogen produce a large increase in vorticity as the
shock passes through the hydrogen fuel. As can be seen in the study of Don and Quillen (J. Comput.
Phys. 1995; 122:244), Don and Gottlieb (SIAM J. Numer. Anal. 1998; 35:2370) and the present grid
convergence study, the size, spacing and velocity of the �ne-scale vortical structures are very di�cult to
accurately simulate numerically. The di�culty in obtaining well-resolved multiscale combustion �ows
by all methods considered will be illustrated. Published in 2003 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the modelling of viscous problems containing �nite-rate chemistry, a wide range of space
and timescales is often present, over and above the di�erent scales associated with turbulence
�ows, leading to additional numerical di�culties. This stems mainly from the fact that most
numerical algorithms used in reacting �ows were originally designed to solve non-reacting
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�uid �ows. It was shown in Reference [1] that, for sti� reactions containing shock waves,
it is possible to obtain stable solutions that look reasonable and yet are completely wrong,
because the discontinuities are in the wrong locations. Largely due to numerical dissipation,
sti� reaction waves move at non-physical wave speeds, often at the rate of one grid cell per
time step, regardless of their proper speed. There exist several methods that can overcome
this di�culty for a single reaction term. For more than a single reacting term in fully coupled
non-linear systems, more research is needed. One impractical way of minimizing the wrong
speed of propagation of discontinuities is to demand orders of magnitude grid size reduction
compared with what appears to be a reasonable grid spacing in practice. Another way is
to develop e�cient, stable, non-dissipative or very low-dissipative adaptive high accurate
schemes.
Based on �xed time step and grid spacing analysis, it was also shown in References [2, 3]

that the numerical phenomenon of incorrect propagation speeds of discontinuities may be
linked to the existence of some stable spurious steady–state numerical solutions, and that the
various ways of discretizing the reaction term can a�ect the stability of the overall scheme.
Pointwise evaluation of the source terms appears to be the least stable. In addition, it was
shown in References [4, 5] (also based on �xed time step and grid spacing analysis) that spu-
rious discrete travelling waves can exist, depending on the method of discretizing the source
term. When physical di�usion is added, it is not known what type of numerical di�culties
will surface. Appropriate adaptive time step and adaptive grid spacing controls can alleviate
some of the spurious behaviour at the expense of higher computational cost, complexity in
programming and added unknown non-linearity e�ects introduced into the overall computa-
tional system. At present, e�cient and reliable dynamics grid adaptation schemes for rapidly
developing multiscale complex viscous �ows are not fully developed. Guidelines in numerical
treatment of source terms (other than pointwise evaluation) for highly coupled non-linear sys-
tems are not available. This paper focuses only on the numerical dissipation issue. The degree
of improvement in resolution of �ne scale �ow structures by the sixth-order low dissipative
method over standard second-order TVD methods is examined.
The outline of the paper is as follows. Section 2 gives a brief description of the numerical

methods. Detailed formulation of the scheme can be found in References [6, 7]. The unsteady
supersonic combustion model is given in Section 3 together with the numerical results for the
two test problems. Section 4 discusses the computer implementation.

2. NUMERICAL METHODS

In the Yee et al. [6, 8] method, one time step consists of one step with a fourth-order or
higher accurate non-dissipative spatial base scheme along with a post-processing step, where
regions of oscillation are detected using an arti�cial compression method (ACM) [3] sensor,
and the solution is �ltered by adding the numerical dissipation portion of a shock capturing
scheme in these regions. Often an entropy split form of the inviscid �ux derivative [8–10] is
used. The entropy splitting of the inviscid �ux derivative is considered as a conditioned (or
more stable) form of the governing equations. The idea of the scheme is to have the spatially
high-order accurate non-dissipative scheme activated at all times and to add the full strength,
e�cient and accurate numerical dissipation only at the shock layers. Thus, it is necessary to
have good detectors which �ag the layers, and not the oscillatory turbulent parts of the �ow
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�eld. Entropy splitting is built in as an option in our computer code. For strong shocks, the
gain in stability by using the entropy splitting is diminished. See Reference [8] for a study.
Since the two chosen model problems contain strong viscous shocks, the entropy splitting
is not used for the inviscid �uxes for the computations reported here. Successful examples
of the bene�t of entropy splitting on �ows with long time wave propagations, low speed
compressible turbulence and=or weak shocks are shown in References [8, 11].
It was shown in Yee et al. that the ACM sensor, while minimizing the use of numeri-

cal dissipation away from discontinuities, requires tuning parameters and is physical problem
dependent. To minimize the tuning of parameters and physical problem dependence, new sen-
sors with improved detection properties were proposed in Reference [7]. The new sensors are
derived by utilizing appropriate non-orthogonal wavelet basis functions and can be used to
completely switch o� the extra numerical dissipation outside shock layers. The non-dissipative
spatial base scheme of arbitrarily high-order of accuracy can be maintained without compro-
mising its stability at all parts of the domain where the solution is smooth. Two types of
redundant non-orthogonal wavelet basis functions are considered. One is the B-spline wavelet
[12] used by Gerritsen and Olsson [10] in an adaptive mesh re�nement method to determine
regions where re�nement should be done. The other is a modi�cation of the multiresolution
method of Harten [13] by converting it to a new, redundant, non-orthogonal wavelet. The
wavelet sensor is then obtained by computing the estimated Lipschitz exponent of a chosen
physical quantity (or vector) to be sensed on a chosen wavelet basis function. Both wavelet
sensors can be viewed as dual purpose adaptive methods leading to dynamic numerical dissi-
pation control and improved grid adaptation indicators. Consequently, they are useful not only
for shock-turbulence computations but also for chemical reaction and combustion simulations.
For all of the computations, central di�erencing is used for the viscous terms with the

order matching the order of the base scheme for the inviscid �uxes. For the reacting terms,
pointwise evaluation of the source terms is adopted. That is, the source terms are evaluated
at the grid point (j; k). Although pointwise evaluation of the source terms appears to be the
least stable procedure for inviscid �ows [2, 3], when physical di�usion is present, no known
guidelines are available.
These two high-order �lter schemes are hereafter referred to as the ACM and wavelet

�lter schemes. This �lter approach is particularly important for multiscale viscous �ows. The
procedure takes the physical viscosity and the reacting terms into consideration since only
non-dissipative high-order schemes are used as the base scheme. In other words, numerical
dissipation based on the convection terms is used to �lter the numerical solution at the com-
pletion of the full step of the time integration, and only at regions where the physical viscosity
is inadequate to stabilize the high frequency oscillations due to the non-dissipative nature of
the base scheme.
We use the same notation as in References [6, 8, 14]. The ACM and wavelet �lter schemes

with sixth-order central base scheme for both the inviscid and viscous �ux derivatives are
denoted by ACM66 and WAV66. See References [6, 8, 14] for the forms of these �lter
schemes. The scheme using the �fth-order WENO for the inviscid �ux derivatives and sixth-
order central for viscous �ux derivatives is denoted by WENO5. For the ACM66, WAV66 and
WENO5, the standard fourth-order Runge–Kutta temporal discretization is employed. We
denote these schemes as ACM66-RK4, WAV66-RK4 and WENO5-RK4. Except WENO5-
RK4, the rest of the methods, unless otherwise indicated, use the Roe’s average state and the
van Leer limiter for the numerical dissipation portion of the �lter. The wavelet decomposition
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was applied in density and pressure, and the maximum wavelet coe�cient of the two com-
ponents was used. The numerical dissipation is switched on wherever the wavelet analysis
gives a Lipschitz exponent less than 0.5. Increasing this number will reduce oscillations, at
the price of reduced accuracy. See Reference [7] for other possibilities.
The WENO5 is implemented as described in Reference [15] with the only di�erence being

that we use the classical fourth-order Runge–Kutta method in time (WENO5-RK4). The
WENO5 method is a discretization of the convective terms using a weighted average of third-
order accurate �nite-di�erence stencils. The stencils are applied in characteristic variables, and
are biased in the upwind direction. The weights in the averaging are constructed such that
stencils over non-smooth regions are weighted out, and such that the method becomes �fth-
order accurate when the solution is smooth. We used global Lax–Friedrichs �uxes as the basis
for the WENO method.

3. A SUPERSONIC COMBUSTION MODEL

For the numerical experiment, the same supersonic reactive �ow problem concerning fuel
breakup and mixing of di�erent con�gurations as presented in References [16, 17] is used.
This is a simpli�ed model that might be used as fuel mixing in advanced aerospace propulsion
systems, e.g. a hydrogen fuel supersonic combustion scramjet that is capable of propelling
a space vehicle at hypersonic speed. See Reference [17] and references cited therein for a
discussion.
The governing equations are the compressible Navier–Stokes equations with four species

undergoing multichemical reactions. The equations are formulated in the conserved variables
U=(�1; : : : ; �N ; �u; �v; e), where � is the density of the mixture, (u; v) are velocities, and
e is the total energy. �i=�yi, where yi is the mass fraction of species i. The equations are
in the form

Ut + Fx(U) +Gy(U)=Fvx(U;Ux;Uy) +G
v
y(U;Ux;Uy) + S(W)

with standard convective �ux vectors F and G, and di�usive �ux vectors Fv and Gv. S(W)
is the source term representing chemical reactions.
Total energy is modelled as

e=
N∑
i=1
�i�i(T ) +

1
2
�u2 +

N∑
i=1
h0i �i

where the internal energy �i(T ) is computed by a polynomial �t to thermodynamical data.
The formation enthalpies, h0i , are given numbers. Sutherland’s law,

�i=�i0

(
T
T i0

)3=2(T i0 + Si
T + Si

)

is used to model the viscosity of each species. �i0; T
i
0; S

i are constants, di�erent for di�erent
species. The total viscosity of the mixture is computed from Wilke’s law,

�=
N∑
i=1

�iXi∑N
j=1 Xj�ij
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where

�ij=
(1 + ((�i=�j)(yj=yi))1=2(Mi=Mj)1=4)2

(8(1 +Mi=Mj))1=2

and Xi are molar fractions, and Mi is the molar mass of species i. A Prandtl number, Pr=0:72,
Schmidt number Sc=0:22, and the perfect gas equation of state approximation are used. The
mixture speci�c heat at constant pressure was obtained from McBride et al. [18]. The Svehla
[19] species viscosity constants and the Wilke’s law model [20] for the mixture viscosity are
used.
The chemical reaction is modelled by a single-step reversible reaction using H2, O2, H2O

and N2. The single-step reversible reaction using H2, O2, H2O and N2 is

2H2 + O2� 2H2O

Species N2 is inert. See Don and Gottlieb for detailed discussion of the model.
A 2D �ow consisting of a planar shock in air interacting with a circular zone of hydrogen

bubbles in two di�erent initial con�gurations is considered. The two initial con�gurations are
(a) a single bubble and (b) two non-aligned bubbles. The temperature of the hydrogen and
air in the undisturbed region ahead of the shock is set to 1000◦K with a pressure of 1 atm.
and zero velocity. A Mach 2 shock is placed at xs=0:005. The gradient in pressure across the
shock in conjunction with the gradient in �uid density between the air and hydrogen produces
a large increase in vorticity as the shock passes through the hydrogen fuel. As can be seen in
the numerical simulation of Don and Quillen, and Don and Gottlieb using spectral and high-
order ENO schemes, and the present grid convergence study, the size, spacing and velocity
of the �ne-scale vortical structures are very di�cult to accurately simulate numerically.
The reason for choosing this particular problem, was that it is well known, and well docu-

mented in the literature. Several high-order solutions can be found, for example in References
[16, 17].

3.1. Planar shock interacting with a single hydrogen bubble

In the �rst test problem a planar shock in air is interacting with a single circular hydrogen
bubble. The radius of the hydrogen bubble is 0.01. A Mach 2 shock is placed at xs=0:005. The
domain is 06x60:175 and −0:0456y60:045. All of the computations use uniform Cartesian
grid spacing as was done by Don and Quillen and Don and Gottlieb. Figure 1 shows snapshots
of the density at six di�erent stages of the evolutionary process, computed by ACM66-RK4
using a 500× 250 grid. The shock breaks the bubble into two smaller hydrogen bubbles. These
bubbles start to rotate after the shock has passed through, and a complex structure develops
inside the bubbles. In Figure 2, we show a convergence study at time 60�s, illustrated by the
hydrogen mass fraction using the second-order Runge–Kutta temporal discretization and the
spatial second-order TVD scheme of Harten and Yee (TVD-RK2) using the minmod limiter.
For this study we only compute on the domain 06x60:09 and 06y60:045. Symmetry
conditions are enforced on the lower boundary.
Results from TVD66-RK4, ACM66-RK4, WAV66-RK4 and WENO5-RK4 methods are

shown in Figures 3–6. We also show, in Figure 2, results from using the second-order Harten–
Yee TVD scheme, which is a more standard state of the art solution technique. Here TVD66-
RK4 di�ers from ACM66-RK4 in that the ACM sensor is set to 1. The grid dimension are
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Figure 1. Density contours of ACM66-RK4 on a 500× 250 grid: Time evolution
of a Mach 2 shock in air interacting with one hydrogen bubble: (a) Time 6:51 �s.

(b) Time 19:31 �s. (c) Time 37:5 �s. (d) Time 53:6 �s.

increased from 250× 125 to 4000× 2000 for some schemes. One can see the advantage of
the ACM sensor by examining the two solutions. The results using ACM66-RK4 are less
di�usive than those using TVD66-RK4. It seems that WENO5-RK4 gives a solution which is
similar to the solution obtained by the TVD-RK2 on a grid which is one level �ner. The �ow
structures and convergence trends from the ACM66-RK4 and TVD66-RK4 are similar. Grid
convergence of the �ne-scale �ow structures are not perfectly reached with either method. At
approximately 2000× 1000 grid points the global structure of the solutions have reached the
regime where the viscous, parabolic part of the operator starts to have signi�cant in�uence
on the explicit time step from the CFL condition. For coarser grids we see that the WENO5-
RK4 scheme gives a resolution which is similar to that of TVD66 and is somewhat more
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Figure 2. Grid re�nement of the second-order Harten–Yee TVD scheme (TVD-RK2). Hydrogen
mass fraction contours at time 60 �s: (a) TVD-RK2, 250× 125 grid. (b) TVD-RK2, 500× 250 grid.

(c) TVD-RK2, 1000× 500 grid. (d) TVD-RK2, 2000× 1000 grid.

di�use than that of ACM66. The �ne scale solution structures depart from the two methods
as we re�ne the grid. The CPU per time step by WENO5-RK4 is 2.5 times of the rest of the
schemes which are similar in CPU. Therefore, computations beyond a 1000× 500 grid using
WENO5-RK4 are too time consuming and costly.
There are two CFL conditions used here, one for the �uid (CFL=0:6) and one for the

reacting terms (CFL=0:3). The values 0.6 and 0.3 turned out to work well in practice. We
only tried a few values. It would perhaps be possible to �nd somewhat larger values that
work well, too. The two CFL conditions give two di�erent time steps. The smallest of these
two time steps is used. For this model and the above grid convergence study, it is di�cult
to assess the exact accuracy and robustness of these schemes. Since the structure develops
rapidly, static grid adaptations might not be practical and dynamic grid adaptations are still

Published in 2003 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:1221–1238



1228 B. SJ �OGREEN AND H. C. YEE

0.055 0.06 0.065 0.07 0.075 0.08
0

0.005

0.01

0.015

0.02

y

x

TVD66 250 x 125

0.055 0.06 0.065 0.07 0.075 0.08
0

0.005

0.01

0.015

0.02
y

x

TVD66 2000 x 1000

0.055 0.06 0.065 0.07 0.075 0.08
0

0.005

0.01

0.015

0.02

y

x

TVD66 3000 x 1500

0.055 0.06 0.065 0.07 0.075 0.08
0

0.005

0.01

0.015

0.02

y

x

TVD66 500 x 250

0.055 0.06 0.065 0.07 0.075 0.08
0

0.005

0.01

0.015

0.02

y

x

TVD66 1000 x 500

(a)

(e)

(d)(c)

(b)

Figure 3. Grid re�nement of the TVD66-RK4 scheme. Hydrogen mass fraction contours at time 60 �s:
(a) TVD66-RK4, 250× 125 grid. (b) TVD66-RK4, 500× 250 grid. (c) TVD66-RK4, 1000× 500 grid.

(d) TVD66-RK4, 2000× 1000 grid. (e) TVD66-RK4, 3000× 1500 grid.
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Figure 4. Grid re�nement of the ACM66-RK4 scheme. Hydrogen mass fraction contours at time 60 �s:
(a) ACM66-RK4, 250× 125 grid. (b) ACM66-RK4, 500× 250 grid. (c) ACM66-RK4, 1000× 500 grid.

(d) ACM66-RK4, 2000× 1000 grid. (e) ACM66-RK4, 3000× 1500 grid.
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Figure 5. Grid re�nement of the WAV66-RK4 scheme. Hydrogen mass fraction con-
tours at time 60 �s: (a) WAV66-RK4, 250× 125 grid. (b) WAV66-RK4, 500× 250
grid. (c) WAV66-RK4, 1000× 500 grid. (d) WAV66-RK4, 2000× 1000 grid.

(e) WAV66-RK4, 3000× 1500 grid. (f) WAV66-RK4, 4000× 2000 grid.
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Figure 6. Grid re�nement of the WENO5-RK4 scheme. Hydrogen mass fraction con-
tours at time 60 �s: (a) WENO5-RK4, 250× 125 grid. (b) WENO5-RK4, 500× 250
grid. (c) WENO5-RK4, 1000× 500 grid. (d) WENO5-RK4, 2000× 1000 grid.

under development. The results reported here reveal the challenge of obtaining well-resolved
multiscale complex �ow structures of reactive and=or combustion problems without the use
of an e�cient and reliable dynamic grid adaptation procedure.

3.2. Planar shock interacting with two hydrogen bubbles

As a second test problem we solve the above equations with initial data consisting of two
non-aligned circular hydrogen bubbles. The �rst is centred at (0:0275; 0:01) and the second
at (0:0675;−0:01). They both have radius 0.02. We compute on a domain 06x60:18, and
−0:0456y60:045. Snapshots of the density contours at six di�erent stages of the evolution-
ary process computed by ACM66-RK4 using a 500× 250 grid are shown in Figure 7. The
asymmetric nature of the initial data causes the hydrogen bubbles to split up into smaller
pieces. The �ow pattern is very complicated. For details see Reference [17].
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Figure 7. Density contours by ACM66-RK4, using a 500× 250 grid. Time evolution of a planar Mach
2 shock in air interacting with two initially non-aligned circular hydrogen bubbles: (a) Time 12:9 �s.

(b) Time 39:5 �s. (c) Time 64:4 �s. (d) Time 119 �s.

We study the grid convergence for the solution at time 125 �s. In Figure 8, we show
results from using the TVD-RK2. The same computation with ACM66-RK4, WAV66-RK4 and
WENO5-RK4 are shown in Figures 9–11. These �gures indicate that the sixth-order methods
give better resolution on coarser grids than the low-order methods. The grid dimensions are
increased from 250× 125 to 4000× 2000 for some schemes. The wavelet �lter scheme gives
by far the best resolution of small-scale features. Using similar grid sizes as the one bubble
case, grid convergence was di�cult to reach. The �ne-scale structure inside the hydrogen
bubbles was not resolved unless a very re�ned grid was used. As seen in Figure 10, the
WAV66-RK4 solution appears to change very little between the 3000× 1500 and 4000× 2000
re�nement, and we believe that grid convergence is reached at 4000× 2000 grid points. Study
for example the small tip at x=0:15, y= − 0:01, which is clearly visible on the two �nest
grids of the WAV66-RK4 solution. This structure is not present at any of the solutions on
coarser grids.
In practice we cannot a�ord to use a grid with several thousand points in each coordinate

direction. Assume, for example, that we can a�ord to solve the problem on a grid of 500× 250
points. Assume that the exact solution is close to the 4000× 2000 points WAV66-RK4
solution. Comparing Figures 8–11, at the resolution 500× 250 points, we conclude that the
WENO5-RK4 is superior to the standard method TVD-RK2, but that the sixth-order accurate
ACM66-RK4 and WAV66-RK4 give even better representation of small scales.
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Figure 8. Grid re�nement of second-order Harten–Yee TVD scheme TVD-RK2: Density contours at
time 125 �s of a planar shock interacting with two initially non-aligned circular hydrogen bubbles:
(a) TVD-RK2, 250× 125 grid. (b) TVD-RK2, 500× 250 grid. (c) TVD-RK2, 1000× 500 grid.

4. COMPUTER IMPLEMENTATION

The computations presented here would not have been possible without use of high per-
formance supercomputers. Most of the computations were done on a 512 processor SGI
Origin2000 at NASA Ames Research Centre. Some computations were done on a 300 proces-
sor IBM=SP2 at the Centre for Parallel Computers (PDC) in Stockholm, Sweden. Our code
is parallelized using the Message Passing Interface (MPI) library. The code automatically
divides the computational domain into equal sized patches. Su�cient overlap of points
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Figure 9. Grid re�nement of ACM66-RK4: Density contours at time 125 �s of a planar shock in-
teracting with two initially non-aligned circular hydrogen bubbles: (a) ACM66-RK4, 250× 125 grid.

(b) ACM66-RK4, 500× 250 grid. (c) ACM66-RK4, 1000× 500 grid.

between processors is allocated to allow the sometimes wide stencils which occur in high-
order di�erence methods. The computational domain is simple, and the numerical method is
explicit, which means that it is easy to obtain good parallel performance. The few global op-
erations, such as determination of the time step, are done through calls to reduction routines
in MPI.
Computation times ranged from a few minutes on 10 processors for the smallest problem

to as much as 18 h of computing time on 256 processors for the largest computations (two
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Figure 10. Grid re�nement of WAV66-RK4: Density contours at time 125 �s of a planar shock in-
teracting with two initially non-aligned circular hydrogen bubbles: (a) WAV66-RK4, 250× 125 grid.
(b) WAV66-RK4, 500× 250 grid. (c) WAV66-RK4, 1000× 500 grid. (d) WAV66-RK4, 2000× 1000

grid. (e) WAV66-RK4, 3000× 1500 grid. (f) WAV66-RK4, 4000× 2000 grid.
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Figure 11. Grid re�nement of WENO5-RK4: Density contours at time 125 �s of a planar shock in-
teracting with two initially non-aligned circular hydrogen bubbles: (a) WENO5-RK4, 250× 125 grid.

(b) WENO5-RK4, 500× 250 grid. (c) WENO5-RK4, 1000× 500 grid.

bubble case using WAV66-RK4 on a 4000× 2000 grid). The di�erent numerical methods
were implemented with some care to have an e�cient computation. For the WENO5 scheme,
the number of operations in our implementation was approximately the same as the number
given in Reference [15]. The computational times were as follows. The ACM66-RK4 method
had approximately the same CPU time as the second-order TVD scheme (TVD-RK2). The
wavelet version of the �lter (WAV66-RK4) required almost the same CPU time as the original
ACM66-RK4 scheme. The WENO5-RK4 scheme consumed 2.5 times the CPU time of the
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TVD-RK2. The measured times are for computing one time step, and the total number of
time steps required to reach the same physical time by each method has not been taken into
consideration. The number of �ux evaluations di�er, since the WENO5-RK4, ACM66-RK4
and WAV66-RK4 schemes are integrated by a four-stage fourth-order Runge–Kutta method
(i.e. four viscous and inviscid �ux evaluations), while for the TVD-RK2 schemes, the �uxes
are only evaluated twice by the second-order Runge–Kutta time integrator. The wavelet �lter
leads to a di�erence operator which has a stencil width which increases rapidly as the number
of multiresolution levels of the wavelet increases. In the present implementation, the number of
wavelet levels is small, and a su�cient interprocessor overlap is made. It is, however, possible
to implement the wavelet algorithm more generally with an FFT-like butter�y communication
pattern. This is a topic of current investigation.
The e�ciency of the �lter can be improved by not computing the �lter terms when the

sensor is equal to zero. Due to the complexity in programming, this was not implemented,
though it could give some further CPU speedup for the ACM66-RK4 and WAV66-RK4
schemes.

5. CONCLUSIONS

Numerical experiments indicate that the ACM66-RK4 and WAV66-RK4 are less di�usive
than WENO5-RK4, and at a computational cost which is only 40% of the cost of the WENO
scheme. In comparison with a conventional second-order TVD method, the highly accurate
methods exhibit similar results, but with a coarser grid. For the present combustion model,
it is di�cult to judge whether the solutions are fully resolved. Large-scale structures seem
to have converged, but the �ne-scale structures seem to be beyond the reach of today’s
supercomputers without the use of e�cient and reliable dynamic grid adaptations. To reduce
the grid size while still obtaining well-resolved simulations, a more relevant comparison for
the application of practical computations is to incorporate the dual purpose adaptive property
of the wavelet sensor, namely, grid adaptation and dynamic numerical dissipation control
indicator. We believe that the dual purpose adaptive property of the wavelet sensor is very
useful for rapidly developing multiscale problems. This is a topic of current investigation.
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